Developed by Ross Carty and NOASC Backcountry Staff

The NOASC Avalanche Terrain Risk Scale (NATRS) was developed through a need for a logical methodology for prioritizing the steps to identify variable risk avalanche terrain for our backcountry operations. This scale is based on the philosophy put forth by the internationally recognized scale for grading rivers, which is a scale that our guides have an existing understanding, knowledge and experience in the use of, through their summer adventure guiding which includes whitewater raft guiding.

NOASC looked at other terrain risk scales including the Avalanche Terrain Exposure Scale (ATES) developed by Grant Statham and Bruce McMahon, 2004, Parks Canada Agency, and the Avalanche Terrain Scale (ATR) proposed by Dick Penniman and Rene Boisselle, 1996 Decision-making on variable Risk Terrain, International Snow Science Workshop (ISSW), Banff Canada. We have incorporated ideas, concepts, and terrain features used in both of these scales in developing our risk scale. In order to help decrease any subjectivity with interruption of the scale and to reduce an ambiguity problems, we have tried to use easily recognizable/measurable terrain features, assigning quantitative values to them.

NOASC uses this scale to assign a class to all our backcountry courses based on the quantifiable terrain features outlined in the scale and features present on the course. By using the weather conditions around the time of the backcountry tour, winter history of the proposed course area, and our guidelines for backcountry tour operations, we make decisions on what possible course (s) can and cannot be used on the day of the tour, based on the class of the course.

Once in the field, we further make decisions on course selection, etc., based on local microclimates and snow pack stability, so as to minimize avalanche risks to the backcountry tour party, as much as is practically possible. If the risk level cannot be controlled inline with the tour's goals by using both snow stability tests, and route/slope selection using the NATRS scale, the guide in the field always has the authority and ultimate responsibility, to cancel the backcountry trip.

Slope	Precautions:	Potential Outcomes of	Quantifiable Terrain features
Class		proceeding on these class slopes:	
Class 1	 Minimal need to look at the stability in the 	1) No injury or no deep	1. Slopes Angles of less than 25 degrees.
	snowpack, risk of an avalanche occurrence is low.	burial is likely; self rescue	2. Uniform slope
	 Precautions needed are low. 	is highly probable.	3. Less than 15 metres of vertical drop between potential
	• These slopes commonly used as test slopes to	2) Small potential starting	avalanche starting zone and end of run out zone.
	help assess the snow strength on higher risk	zone,	4. No potentially injurious terrain features (rocks, trees,
	slopes with similar aspects at similar elevations.	3) Minimal destructive forces	etc).
	• Some notion of the potential for the snowpack to	(less than 15 metres of	5. Small, consistent avalanche run out zone.
	fail is helpful.	vertical).	6. Many options for route selection.
	• Precautions necessary to help avoid injury from a	4) No deep burial potential.	
	simple fall in that event should be taken.	5) No exposure on run outs.	
	• The risk of severe injury or death from deep		
	burials on Class 1 slopes is effectively zero.		
Class 2	• Need to analyze the snow pack for strength to	1) Shallow burial potential	1. Slope angles of between 25-35 degrees.
	reduce risk.	only; rescue is highly	2. Mainly a uniform slope with little variations in slope
	• The precautions listed for Class 1 slopes as well as	probable,	shape.
	standard personal precautions for potential burial	2) Small potential starting	3. Between 15 – 50m of vertical drop between potential
	are recommended. These would include potential	zone,	avalanche starting zone and end of run out zone.
	victims securing openings in clothing, loosening	3) Small destructive forces	4. Potentially injurious terrain features on less than 10%.
	pack and pole straps. At least a ski pole test or	(15 to 50 metres of	5. Gradual, consistent run out (no deep burial potential).
	hand test of snow layering, or tracing of the desired	vertical)	6. Many options for route selection with at least 2 route

			• • • • • • •		
	slope to be skied and some notion of the potential		Small deposition area for		selection options of a class 2 route.
	for the snowpack to fail is advised by the first skier		beacon search.		
	down the slope.	5)	Limited exposure		
	• The group should be prepared for a shallow burial		crossing run out paths or		
	rescue.		run out zones.		
	• Rescue skills should be good.				
	• The risk of severe injury or death from deep burials				
	on Class 2 slopes is low				
Class 3	• Need to analyze the snow pack for strength to	1)	Deep burial potential;	1.	Slope angle of between 30-40 degrees.
	reduce risk. Results from snow stability tests		rescue is questionable,	2.	Slope shape varies with valleys, ribs, and/or convex
	should be recorded to build more detailed history of	2)	Moderate sized starting		areas being present. This variation is less than 20%
	the area.		zone,		of the main slope area.
	• The precautions listed for Class 2 slopes as well	3)	Moderate destructive	3.	Multiple slope aspects within main slope, but still 1
	as, at least one representative compression test		forces (50 to 100 metres		well defined run out zone.
	should be conducted before accessing the slope,		of vertical).	4.	Between 50 – 100m of vertical drop between
	or hiking up slopes to evaluate snow strength	4)	Moderate sized		potential avalanche starting zone and end of run out
	(stability test results on hike ups should be used to		deposition area for		zone.
	extrapolate potential risks on steeper slopes		beacon search.	5.	Potentially injurious terrain features on less than
	above).	5)	Isolated exposure to start		30%.
	• If compression tests or other indicators suggest		zones and run out paths.	6.	Abrupt transitions in flat or depressed avalanche run
	potential failure planes, the group should expect	6)	Options still available to		out zone.
	and be prepared for a potentially deep burial		avoid avalanche paths	7.	Many options for route selection with at least 2 route
	rescue. Route selection should be revised looking		and starting zones.		selection options of a class 2 route.

	for a route of loss rick to the party				
	for a route of less risk to the party.				
	 Rescue skills should be very good. 				
	• The risk of severe injury or death from a deep burial				
	on Class 3 slopes is moderate.				
Class 4	• Must analyze the snow pack for strength to reduce	1.	Deep burial and/or serve	1.	Slope angle of between 35-45 degrees.
	risk. Results from snow stability tests must be		injury is probable; rescue	2.	Slope shape varies with valleys, ribs, and/or convex
	recorded to build more detailed history of the area.		is doubtful.		areas being present. This variation is less than 50% of
	• The precautions listed for Class 3 slopes as well	2.	Large potential starting		the main slope area.
	as, one or more representative compression tests		zone.	3.	Multiple slope aspects within main slope and 2 or less
	should be conducted whether or not weakness is	3.	Large potential		run out paths.
	evident or suspected.		destructive forces (more	4.	More than 100m of vertical drop between potential
	• Special attention should be given to potentially		than 100 metres of		avalanche starting zone and end of run out zone.
	variable snow pack stratigraphy across the		vertical).	5.	Potentially injurious terrain features on less than 50%
	starting zone (example areas under tension, rock	4.	Large deposition area for		of slope.
	outcrops, beside trees, and assumed snow loaded		beacon search.	6.	Abrupt transitions in flat or depressed avalanche run
	areas).	5.	Exposure to start zones		out zone(s).
	• Representative compression test(s) should be		and run out paths.	7.	Steeper slope above.
	conducted before accessing the slope if variable	6.	Limited chances to	8.	3 - 5 Route selection options with at least 1 route
	conditions in the starting zone are suspected. A		reduce exposure through		selection option of less than a class 4 route.
	Extended Column compression test is advised to		route selection.		
	test for fracture propagation risk.				
	• Knowledge of performance history (snow pack data				
	for the area through the winter) under a variety of				

		snowpack conditions including those that exist at				
		the time is helpful.				
	•	Rescue and evacuation skills and pre-planning				
		should be excellent.				
	•	The risk of severe injury or death from deep or				
		lengthy burial, impact with obstacles, and/or				
		strong avalanche forces on Class 4 slopes is				
		high.				
Class 5	•	Must analyze the snow pack for strength to reduce	1)	Deep burial, severe injury	1.	Slope angle of between 40-50+ degrees.
		risk using various methods, and record findings.		and/or death is virtually	2.	Slope shape varies with valleys, ribs, and/or convex
	•	All precautions listed for Class 4 slopes should be		certain; rescue is highly		areas being present. This variation is more than 50%
		observed as well as, one or more representative		improbable,		of the main slope area. The main slope may also
		compression tests should be conducted whether	2)	Large or multiple potential		consist of cliffs, hidden slopes above gullies, cornices
		or not weakness is evident or suspected.		starting zones at various		above.
	•	Numerous representative compression tests in all		elevations,	3.	Multiple slope aspects within main slope and multiple
		potential starting zones on all ascents / descents	3)	Potentially devastating		run out paths (more than 2).
		are advised on a periodic basis throughout the		destructive forces (more	4.	More than 200m of vertical drop between potential
		winter to document changes in snow stratigraphy.		than 200 metres of		avalanche starting zone and end of run out zone.
	•	A performance history under a variety of		vertical)	5.	Potentially injurious terrain features on over 50% of
		snowpack conditions including those that exist at	4)	Potentially injurious		slope.
		the time should be known.		terrain features on over	6.	One large or depressed avalanche run out zone or
	•	Representative compression test(s) should be		50% of the slope,		multiple converging run out paths leading into one flat
		conducted before accessing the slope if variable	5)	Large or multiple		or depressed run out zone.

Developed by Ross Carty and NOASC Backcountry Staff

	conditions in the starting zone are suspected. A		deposition	areas	for	7.	Multiple steeper slopes, or cliffs located above the
	Extended Column compression test is advised to		beacon sea	rch.			main slope area.
	test for fracture propagation risk.	6)	Frequent	exposure	to	8.	Only two or less possible routes; option route may
•	Ready access to advanced life support (AED) and		start zones	and run	out		not be of a lesser class.
	rapid evacuation should be available.		paths.				
•	Preparation for body recovery is advised.	7)	Avoidance	of avalar	nche		
•	The risk of severe injury or death from deep or		paths and	starting zo	ones		
	lengthy burial, impact with obstacles, and/or strong		not possible	Э.			
	avalanche forces on Class 5 terrain is extremely						
	high.						

NOTE:

If steeper slopes exist above the slope, the class should be upgraded by one class. For example, a class 2 slope goes to a Class 3 slope when slopes of steeper than 25 degrees exist above. If there are steeper slopes below the slope, the slope class should be upgraded by using the "+" notation. The reasoning here is that the steeper slopes above, represents a greater risk to the potential of an avalanche occurring. While if an avalanched occurred, the consequences of steeper slopes below will also increase the risk of injury, or even death to a person caught in such a slide, thus the class rating of the slope is increased.